
Olaf Rudnik 17

Introduction
The increasing necessity for more powerful systems

capable of storing and analyzing hundreds of terabytes or
even petabytes of data and successfully sharing that data
across multiple often incompatible platforms excludes the
use of a single personal computer, a powerful mainframe
machine, or even a supercomputer. The sheer computation-
al power and storage capabilities are far beyond any single,
highly localized system. Until about a decade ago, scien-
tists and organizations depended heavily on the use of the
above-mentioned resources for processing of information
obtained from a multitude of scientific experiments.
Unfortunately, these resources were not sufficient to allow
the researchers to share the results of their efforts on a
wider scale. Clearly a more global approach needed to be
employed.

With the advent of the Internet, online computing, and
resource sharing, came the idea of employing whole net-
works of computers, data storage facilities and even spare
cycles of end users’ CPUs. As much as individuals would
like to think that their home machines are utilized to their
full potential, people slowly came to realize that it is an
unlikely scenario in most cases. As people browse the Web

or check email, their PCs, and possibly millions of other
interconnected computers, are sitting somewhat idly by and
are wasting some of the most valuable resources that peo-
ple have access to. Although email, Web browsing, and
office applications comprise most of the computing needs
for a majority of people, the use of a global supercomput-
er could most definitely aid scientists by contributing to the
development of new drugs, creating more efficient work
spaces and aeronautics advancements, and exploring many
more applications. This paper will look at the history,
development and applications of distributed and grid sys-
tems in computation and data-intensive sciences.

Distributed and Grid Systems
The ever-increasing number of scientific research

endeavors carries with it a tremendous increase in data size
and storage needs. Computer scientists and scientists in
general were faced with a problem of providing the
research community with a viable solution to obstacles in
sharing and processing all of that information. In the early
and mid 1990s, two new approaches to resource sharing
and processing emerged: distributed computing and grid
systems. Neither of these approaches would have been possible

Olaf Rudnik, from Bay City, Mich., is a second degree senior majoring in
Computer Science and Chemistry. Originally from Poland, he holds an M.A. in
English from Adam Mickiewicz University, Poznan, Poland. After graduation
he hopes to find a career in networking and software development.

The Ruth & Ted Braun Awards
for Writing Excellence

at Saginaw Valley State University

Data-intensive Applications in Distributed
and Grid Systems: Molecular Engineering

Olaf Rudnik
COLLEGE OF SCIENCE, ENGINEERING & TECHNOLOGY

Nominated by Dr. Farid Hallouche
Associate Professor of Computer Science

Olaf Rudnik 18

without the connectivity that the Internet and dedicated
networks have to offer. While superficially similar, these
two computing resources have significant underlying dif-
ferences.

Grid Systems
A grid is a system that encompasses the “collaborative

use of computers, networks, databases, and scientific
instruments owned and managed by multiple organiza-
tions” (Asadzadeh et al., n.d.). Milestone work on the sub-
ject by Foster, Kesselman & Tuecke (2004) identifies a grid
as “coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations” in
which the focus of attention is not on “file exchange but
rather direct access to computers, software, data, and other
resources . . . emerging in industry, science, and engineer-
ing.” Such usage somewhat evenly distributes the costs
involved in building, maintaining and operating expensive
hardware such as particle accelerators or telescopes, for
example. Furthermore, data from a single experiment car-
ried out on such an instrument may need to be looked at by
different research and interest groups and analyzed accord-
ing to their specific needs. Therefore, secure access not
only to that data, but also to other resources including, but
not limited to, computational power, is of paramount
importance.

Historically, grid systems targeted mostly high-powered
computers such as servers, mainframes and supercomput-
ers, but they are not exclusively limited to those and can
incorporate in their infrastructure end user PCs as well. The
software, services and protocols, or middleware as it is
known, used for supercomputing purposes are often written
in specialized languages such as HPC++ or MPI, which are
not easily implemented on PCs or by average PC users.
What further exacerbates the difficulties encountered in the
implementation of grid systems are the unique challenges
these systems face due to dispersion of scientists, their
resources and equipment, as well as the multitude of data-
bases of experiment results that need to be stored,
retrieved, and analyzed (Erlanger, 2002).

Necessarily, creating the grid architecture, which needs
to span not only various heterogeneous resources, but also
entire research sites and organizations spread across the
world, is a daunting task. A generic, high-level representa-
tion of grid layers can be seen in Fig.1 (Foster et. al., n.d.).

Figure 1. Layered grid architecture and its
relationship to the Internet protocol architecture

Source: Foster, et. al., n.d.

As observed by Avery (2002), the lowest level, the
Fabric, includes “shared resources such as computer clus-
ters, data storage systems, catalogs, networks, etc.” Above
it, the Resource and Connectivity layers furnish access to
resources and various communication tools needed to use
the Fabric layer. The Collective layer enables coordination
in using numerous resources spread over multiple sites.
Finally, all of these allow scientists to tailor the system to
the needs of their specific tasks within the Application
layer.

The software and applications that enable the use of
grids are known as the middleware; however, any lengthy
description of middleware used for a particular project is
beyond the scope of this paper. It is worth pointing out,
though, that the need for interoperability and uniformity of
systems has given rise to many undertakings in creating
universal tools that can resolve the issues arising from the
distribution and lack of homogeneity among scientific
resources. One such example is the Globus toolkit which is
implemented using C and Java, languages well known to
nearly all programmers. Furthermore, it provides secure
authentication and log-on services to end users through
“PKI (Public Key Infrastructure) technology coupled with
Web Services” (Globus Toolkit, 2004). It allows an inter-
ested party to perform a single log-on via a smartcard or a
certificate particular to the user without the necessity to
keep track of sites, credentials, etc.

As far as the hardware platforms for grid systems are
concerned, it should be noted that grids were geared more
towards clusters of computers, mainframes, and machines
located mostly at research sites. Their connectivity was
also initially relegated to high speed networks that were
oftentimes designed and built specifically for grid use. In
recent years, however, the trend of merging high speed net-
works (GB/s) into the structure of the World Wide Web has
created a new potential for unification of computational
and storage resources.

Olaf Rudnik 19

Distributed Systems vs. Grid Systems
The two terms–grid and distributed computing–may

seem confusing at first and quite rightly so. After all, the
base upon which they rely is more often than not the World
Wide Web and both use highly dispersed resources. The
best way to draw a clear dividing line between them is to
look at who provides the resources and who uses them.

On the resource side, such as power, memory, and stor-
age, the grid computing uses dedicated and often high-end
computers such as mainframes or supercomputers which
often run incompatible operating systems. On the other
hand, distributed systems mainly target the end-user PCs
with some piece of code installed locally on the end-user’s
computer, which then connects to the managing server for
data to process. That code is provided in versions that can
be run on a specific software platform such as Windows,
Linux, or Mac OS in their various iterations.

One of the most significant differences between the two
approaches is in the software and connectivity with which
they are implemented. Distributed computing software can
be written in C, C++, Java or other high-level languages
which are more easily understood by an average user, but
may not be sufficient for math-intensive applications.
Moreover, the distribution and availability of computers
renders this approach much less useful for programs run-
ning in real time due to dropped connections, delays in
send/receive operations, end users’ need to utilize the full
power of their PCs, PCs going offline, etc. (Erlanger,
2002). Also, distributed computing shifted its workload
mostly to the Internet, as we know it, the speed of which
may sometimes leave a lot to be desired. Therefore, the
applications, with the need for nearly instant response upon
query/request from user(s), puts constraints on the use of
distributed computing in data-intensive sciences. For
example, a request from an astronomer for transfer of
Hubble Space Telescope (HST) images for analysis of light
spectra from distant galaxies might take days if not longer,
especially considering the fact that the size of the database
from HST counts in terabytes (NASA, 2004). The calcula-
tions need not be very intricate themselves, but the disper-
sal and size of data to be analyzed may complicate the
process sufficiently to render such approach impractical or
even impossible.

Another crucial difference in the use of distributed com-
puting versus grid systems is the manner in which software
exploits the computational power of the machine(s) it runs
on. Distributed computations, being mostly run on office or
home computers, need to place emphasis on their non-
intrusive character, that is, the ability of the users to regain
prompt control over their machines should the need arise.
Distributed computing can, unfortunately, be limited by
security and management issues as well as lack of stan-
dardization in software and protocols, oftentimes followed
by bandwidth restrictions imposed on the users by their

ISPs (Erlanger, 2002). Another variation on the subject of
global computing is a construct known as cluster. That par-
ticular arrangement allows for direct communication not
only between the end users’ PCs and managing server(s),
but also between the PCs themselves. Figure 2 provides a
simple pictorial representation of a typical cluster system.

Figure 2. A cluster system

Source: Erlanger, L., 2002

We can thus see that distributed computing is much
more centralized with one or more servers allocating par-
ticular jobs. In the end it is the users who tell the system
(grid) what they need, not the system telling the users what
needs to be done (distributed). To provide some interesting
statistics, Erlanger takes a look at a practical application of
distributed computing:

The performance improvement over typical enterprise
servers for appropriate applications can be phenomenal. In
a case study that Intel did of a commercial and retail bank-
ing organization running Data Synapse's LiveCluster plat-
form, computation time for a series of complex interest rate
swap modeling tasks was reduced from 15 hours on a ded-
icated cluster of four workstations to 30 minutes on a grid
of around 100 desktop computers. Processing 200 trades
on a dedicated system took 44 minutes, but only 33 sec-
onds on a grid of 100 PCs.

Figure 3 provides a straightforward comparison of dis-
tributed computing versus dedicated systems.

Olaf Rudnik 20

Figure 3. Distributed computing vs. dedicated system

Source: Erlanger, L., 2002

As an example of distributed computing, one particular
application stands out: SETI@home. The Search for Extra
Terrestrial Intelligence has captivated the minds of many
people and is known worldwide. At present its software
works as a screen saver and, as a ~700 KB download, poses
no problem for most users, even those who still connect to
the Internet via dial-up modems (SETI@home, n.d.).

Data-Intensive Sciences and Molecular
Engineering

Various technological advances in scientific tools have
allowed researchers to explore the surrounding world both
on a macro- and microscale.

Computers have improved these tools and made . . .
new methods of studying molecules, molecular mod-
eling and combinatorial chemistry, possible. In
molecular modeling, chemists use computers to sim-
ulate the structure and motion of macromolecules. In
combinatorial chemistry, a chemist can use robotic
tools . . . to make a huge number of slightly different
molecules. This set of molecules helps the chemist
search for a useful molecule (Molecule, 2001).
No discussion of existing and practical applications

would be complete without mentioning a few examples.
The research in grid computing has contributed to the rise
of many national and international infrastructures. The fol-
lowing, although by no means exhaustive, is a list of some
of the major branches of science which can benefit from
the increase in computational power as well as data storage
provided by spreading the workload over multiple systems
and domains. In addition to that, most of the entries on the
list are in fact tied with molecular engineering, which is a
basis for nanotechnology and biotechnology of the 21st
century.

High Energy Particle and Nuclear Physics: Of spe-
cial interest in this field are the particle accelerators such as
the Large Hadron Collider at CERN, Switzerland.
Although not yet fully operational, it is scheduled to begin
experiments in 2007. Scientists estimate that its “detector
will record events,” that is, collisions of particle beams, “at
a rate of approximately 100 Hz, accumulating 100 MB/s of
raw data or several petabytes per year of raw and processed
data in the early years of operation” (Avery, 2002).

Astronomy: Surveys of the sky using gigapixel CCD
arrays will soon increase the data size from tera- to
petabytes, just as will the many satellites orbiting our plan-
et and other planets of the solar system.

Biology and Medicine: Genome sequencing of many
earthly organisms as well as study of the structure and
function of proteins will greatly contribute to advances in
the field (Leach, 2001).

Bioinformatics: Design of bio systems (such as DNA
computers) will help solve complex problems.

Environment Management: Prediction of spills based
on geological and geographical data will enable scientists
and emergency response teams to minimize the conse-
quences of industrial accidents.

Molecular Engineering and Pharmaceutical
Industry: Many sciences such as chemistry, molecular
physics, and nanosciences use a lot of software that is relat-
ed. Molecular engineering in particular is a large part of the
research and development of pharmaceutical companies.
These companies use computers for molecular modeling to
screen for drugs that might not be successful and to begin
research on new ones. This is extremely important to the
pharmaceutical companies, because the computational
methods of modeling are projected to save $50 million per
drug developed. Major drug companies might create and
test new molecules, yet these may prove not to be what the
company needs at the moment. Thus, another scientist
seeking a protein for drug testing/interaction might use the
company’s existing database and run modeling against his
own database (Karelson, n.d.).

Molecular simulations and modeling are not exclusively
limited to drug design. Their potential application in other
projects lets the scientists and engineers create new excit-
ing designs. Industrial research and development teams are
also interested in molecular engineering, but their interests
lie in “novel catalysts for environmentally sustainable pro-
duction of chemicals, optically nonlinear organic materials,
and nanobiostructures” (Karelson, n.d.). The reasons these
advances have been made are the amount of knowledge
gained through years of research and the powerful software
now available.

However, molecular modeling is not without its stum-
bling blocks. First, molecular engineers at present cannot
fully utilize all of the resources out there because they are

Olaf Rudnik 21

spread out in many different research laboratories across
the world. Secondly, any time scientists would like to com-
bine those various resources, they have to worry about
incompatibility of hardware and software. The answer to
these problems is the use of computational grid systems.
Grid middleware can deal with the volume of data pro-
duced, as well as provide an integration of resources from
public and commercial databases.

Modeling software can produce thousands of com-
pounds a day, so this amount of data requires storage space
in the order of terabytes. Placing this information on a net-
work is the best way to store it. Given the fact that a job
designing a single drug may need to screen millions of
compounds, a cluster-based supercomputer is not fast
enough to deal with this load. It might take such a comput-
er many months to do all of those calculations when a grid
system does this more quickly by taking advantage of
many other computers whose full power is not being used.

The idea of using the power of geographically diverse
home and office computers has the disadvantage of limited
bandwidth. In order to remedy the issue, it has been sug-
gested that the molecular models be partitioned and com-
putations be duplicated such that the data from the proces-
sors overlap (Ware, 1997). Each processor would be given
its own set of instructions with little to no knowledge of
what other processors are doing. This approach, however,
has one major obstacle. If atoms interact with each other in
the areas where multiple processors are involved, those
processors will have to be in contact to determine what the
model really looks like. Still, creating partitions in molec-
ular models with infrequent communication between
processors is a significant challenge at present (Ware,
1997).

Two projects in Europe are using grid systems that are
testing grid middleware and its use for molecular engineer-
ing. The BIOGRID (ICM, n.d.) is using computational
grids to integrate software commonly used in chemistry
and molecular dynamics, and those using this system have
access to databases via the Internet. The OpenMolGRID
project (OpenMolGRID, n.d.), started in September 2002,
concentrates more on molecular design. This system has
created thousands of new compounds that may lead to new
drugs to fight cancer. The future of the integration of
resources with grid systems could help make great strides
in genomics, as well.

Besides creating new drugs, nanotechnology, or molec-
ular nanotechnology (MNT), is a great motivator to create
grid systems capable of handling lots of data. A design at
that level could possibly include billions of atoms, which
means a lot of memory and storage will be needed. Due to
the complexity of problems it faces, nanotechnology has
been described as trying to build a Lego machine while
wearing big boxing gloves (Wikipedia, n.d.). Besides the
positive items nanotechnology might bring, such as
nanobots (see Fig. 4) or nanomedicine, scientists are pre-

pared for the fact that not everyone may agree that nan-
otechnology is important or should be explored. Worse yet,
there is a growing concern that such micro machines could
be misused by parties engaging in unlawful activities.

Figure 4. Mite and nanogear

Source: Wikipedia, n.d.

4. Conclusions
Undoubtedly, the proliferation of scientific experiments

and creation of new research sites will greatly increase the
amount of data available for analysis and sharing. As of
today the grid and distributed systems are still in their bud-
ding phase and some of them are not yet operational. Those
already on-line still operate on software that is not well
developed and is in testing stages for the most part. It
appears that the systems of today are best suited for mod-
eling calculations. However, when molecular modeling
moves out of the realm of simple molecules and into the
realm of multiple thousand atom systems (such as the one
in Fig. 5), the number of calculations needed to be per-
formed increases exponentially and in some cases factorially!

Figure 5. Nanogear at the molecular view

Source: Wikipedia, n.d.

Olaf Rudnik 22

The calculations for multiple interacting atoms need to
be performed oftentimes on a femtosecond scale. The
resulting range of probabilities is staggering and certainly
no single PC or a mainframe can achieve this task in a rea-
sonable amount of time (Meyyappan & Srivastava, 2003).
The distribution of computing resources seems to be the
most logical step towards the next supercomputer. That
supercomputer might no longer be a bulky machine, run-
ning esoteric applications, but the friendly PC sitting on
our desks, its strength lying in the sheer numbers.

References
Asadzadeh P., Buyya, R., Kei, C. L., Nayar, D., &

Venugopal, S. (n.d.). Global grids and software
toolkits: A study of four grid middleware
technologies. Retrieved November 29, 2004, from
www.gridbus.org/papers/gmchapter.pdf

Avery, P. (2002). Data grids: A new computational
infrastructure for data-intensive science. Retrieved
November 30, 2004, from
www.griphyn.org/documents/document_server/upload
ed_documents/doc--479--royalsoc_v7_with_figs.pdf

Erlanger, L. (2002). Distributed computing: An
introduction. Retrieved November 28, 2004, from
http://www.extremetech.com/article2/0,1558,11769,00
.asp

Foster, I., Kesselman, C., & Tuecke, S. (n.d.) The
anatomy of the grid. Retrieved December 1, 2004,
from www.globus.org/research/papers/anatomy.pdf

ICM. Interdyscyplinarne Centrum Modelowania
Matematycznego i Komputerowego. BIOGRID.
(2004). Retrieved November 28, 2004, from
http://bioGrid.icm.edu.pl/

Globus Toolkit. (2004). Globus Toolkit 3.0 FAQ.
Retrieved November 29, 2004, from http://www-
unix.globus.org/toolkit/faq.html

Green, M. L., & Miller, R. (2004). Molecular structure
determination on a computational & data grid.
Retrieved December 1, 2004, from
http://drifters.ccr.buffalo.edu/grid/download/
Molecular-Structure-Determination-Grid.pdf

Karelson, M. (n.d.) Molecular engineering and drug
design. Retrieved December 1, 2004, from
http://www.reuna.cl/redID/docs/docs_internacionales/
karelson.pdf

Leach, A. R. (2001). Molecular modelling principles and
applications. New York: Prentice Hall.

Meyyappan, M., & Srivastava, D. (2003). Carbon
nanotubes. In Goddard, W. A. III, Brenner, D. W.,
Lyshevski, S. E., & Iafrate, G. J. (Eds.), Handbook of
nanoscience, engineering, and technology (pp. 1-18,
26). Boca Raton, FL: CRC Press.

“Molecule.” Microsoft Encarta Encyclopedia, 2001.
NASA. (n.d.). The Hubble Space Telescope. Retrieved

December 2, 2004, from
http://hubble.nasa.gov/overview/intro.php

OpenMolGRID (n.d.). Retrieved November 27, 2004,
from http://www.openmolGrid.org

SETI@home. (n.d.). Retrieved December 1, 2004, from
http://setiathome.ssl.berkeley.edu/windows.html

Ware, Will. (1997.) Distributed molecular modeling over
very-low-bandwidth computer networks. Retrieved
November 28, 2004, from
http://www.foresight.org/Conferences/MNT05/Papers/
Ware/index.html

Wikipedia. (n.d.) Molecular Nanotechnology. (2004).
Retrieved December 1, 2004, from
http://en.wikipedia.org/wiki/Molecular_nanotechnology

